Monday, 7 August 2017

Previsão Média Móvel Exponencial


Suavização exponencial explicada. Copie os direitos autorais. O conteúdo no InventoryOps é protegido por direitos autorais e não está disponível para republicação. Quando as pessoas primeiro encontram o termo Suavização Exponencial, eles podem pensar que parece um monte de alisamento. Seja qual for o alisamento. Eles então começam a imaginar um cálculo matemático complicado que provavelmente requer um diploma em matemática para entender, e espero que exista uma função incorporada do Excel disponível se eles precisarem fazê-lo. A realidade do alisamento exponencial é muito menos dramática e muito menos traumática. A verdade é que o suavização exponencial é um cálculo muito simples que realiza uma tarefa bastante simples. Ele apenas tem um nome complicado porque o que tecnicamente acontece como resultado deste cálculo simples é realmente um pouco complicado. Para entender o suavização exponencial, ajuda a começar com o conceito geral de suavização e alguns outros métodos comuns usados ​​para o alisamento. O que é suavizar O suavização é um processo estatístico muito comum. De fato, nós encontramos regularmente dados suavizados em várias formas no nosso dia-a-dia. Sempre que usar uma média para descrever algo, você está usando um número suavizado. Se você pensa sobre o motivo pelo qual você usa uma média para descrever algo, você entenderá rapidamente o conceito de suavização. Por exemplo, acabamos de experimentar o inverno mais caloroso registrado. Como podemos quantificar isso? Bem, começamos com conjuntos de dados das temperaturas diárias altas e baixas durante o período que chamamos de Inverno por ano na história registrada. Mas isso nos deixa com um monte de números que saltam bastante um pouco (não é como a cada dia que este inverno foi mais quente do que os dias correspondentes de todos os anos anteriores). Precisamos de um número que remova todo esse salto dos dados para que possamos comparar mais facilmente um inverno com o próximo. Remover o salto nos dados é chamado de suavização e, neste caso, podemos usar apenas uma média simples para realizar o alisamento. Na previsão da demanda, usamos alisamento para remover a variação aleatória (ruído) de nossa demanda histórica. Isso nos permite identificar melhor padrões de demanda (principalmente tendência e sazonalidade) e níveis de demanda que podem ser usados ​​para estimar a demanda futura. O ruído em demanda é o mesmo conceito que o salto diário dos dados de temperatura. Não surpreendentemente, a maneira mais comum de remover o ruído do histórico de demanda é usar uma média simples ou mais específica, uma média móvel. Uma média móvel apenas usa um número predefinido de períodos para calcular a média, e esses períodos se movem com o passar do tempo. Por exemplo, se eu estiver usando uma média móvel de 4 meses e hoje é 1 de maio, estou usando uma média de demanda ocorrida em janeiro, fevereiro, março e abril. No dia 1 de junho, vou usar a demanda de fevereiro, março, abril e maio. Média móvel ponderada. Ao usar uma média, estamos aplicando a mesma importância (peso) a cada valor no conjunto de dados. Na média móvel de 4 meses, cada mês representava 25 da média móvel. Ao usar o histórico de demanda para projetar a demanda futura (e especialmente a tendência futura), é lógico chegar à conclusão de que você gostaria que o histórico mais recente tenha um impacto maior na sua previsão. Podemos adaptar nosso cálculo de média móvel para aplicar vários pesos a cada período para obter os resultados desejados. Nós expressamos esses pesos como porcentagens e o total de todos os pesos para todos os períodos deve somar até 100. Portanto, se decidimos que queremos aplicar 35 como o peso para o período mais próximo em nossa média móvel ponderada de 4 meses, podemos Subtrair 35 de 100 para descobrir que temos 65 restantes para dividir nos outros 3 períodos. Por exemplo, podemos terminar com uma ponderação de 15, 20, 30 e 35 respectivamente para os 4 meses (15 20 30 35 100). Suavização exponencial. Se voltarmos ao conceito de aplicar um peso ao período mais recente (como 35 no exemplo anterior) e espalhar o peso restante (calculado subtraindo o peso do período mais recente de 35 de 100 para obter 65), temos Os blocos de construção básicos para o cálculo de suavização exponencial. A entrada de controle do cálculo de suavização exponencial é conhecida como o fator de suavização (também chamado de constante de suavização). Representa essencialmente a ponderação aplicada à demanda de períodos mais recentes. Então, onde usamos 35 como a ponderação para o período mais recente no cálculo da média móvel ponderada, também poderíamos escolher usar 35 como fator de suavização em nosso cálculo exponencial de suavização para obter um efeito semelhante. A diferença com o cálculo de suavização exponencial é que ao invés de nós ter que descobrir o quanto de peso a aplicar a cada período anterior, o fator de suavização é usado para fazer isso automaticamente. Então, aqui vem a parte exponencial. Se usarmos 35 como fator de suavização, a ponderação da demanda de períodos mais recente será de 35. A ponderação da demanda nos próximos períodos mais recentes (o período anterior ao mais recente) será 65 de 35 (65 provém de subtrair 35 de 100). Isso equivale a 22,75 ponderações para esse período se você fizer a matemática. Nos próximos períodos, a demanda será 65 de 65 de 35, o que equivale a 14,79. O período anterior será ponderado como 65 de 65 de 65 de 35, o que equivale a 9.61, e assim por diante. E isso continua com todos os seus períodos anteriores até o início do tempo (ou o ponto em que você começou a usar o suavização exponencial para esse item em particular). Você provavelmente pensa que isso parece uma série de matemática. Mas a beleza do cálculo de suavização exponencial é que, ao invés de ter que recalcular em relação a cada período anterior sempre que você obtém uma nova demanda de períodos, você simplesmente usa a saída do cálculo de suavização exponencial do período anterior para representar todos os períodos anteriores. Você está confuso ainda Isso fará mais sentido quando olhamos para o cálculo real. Normalmente, nos referimos à saída do cálculo de suavização exponencial como a próxima previsão do período. Na realidade, a previsão final precisa de um pouco mais de trabalho, mas para os fins desse cálculo específico, nos referiremos a ele como a previsão. O cálculo de suavização exponencial é o seguinte: a demanda de períodos mais recente multiplicada pelo fator de suavização. PLUS A previsão de períodos mais recente multiplicada por (um menos o fator de suavização). D os períodos mais recentes exigem S o fator de suavização representado na forma decimal (então 35 seria representado como 0,35). F os períodos mais recentes previstos (a saída do cálculo de suavização a partir do período anterior). OU (assumindo um fator de suavização de 0,35) (D 0,35) (F 0,65) Não é muito mais simples do que isso. Como você pode ver, tudo o que precisamos para obter dados aqui são os períodos mais recentes, a demanda e os períodos mais recentes previstos. Aplicamos o fator de suavização (ponderação) para os períodos mais recentes exigindo da mesma maneira que seria no cálculo da média móvel ponderada. Em seguida, aplicamos a ponderação restante (1 menos o fator de suavização) para a previsão de períodos mais recentes. Uma vez que a previsão de períodos mais recentes foi criada com base na demanda dos períodos anteriores e nos períodos anteriores previstos, que se baseou na demanda do período anterior e na previsão do período anterior, que se baseou na demanda do período anterior Isso e a previsão para o período anterior, que se baseou no período anterior. Bem, você pode ver como todos os períodos anteriores são representados no cálculo, sem realmente voltar e recalcular qualquer coisa. E foi isso que impulsionou a popularidade inicial do suavização exponencial. Não era porque fazia um melhor trabalho de suavização do que a média móvel ponderada, era porque era mais fácil de calcular em um programa de computador. E, porque você não precisava pensar sobre a ponderação para dar períodos anteriores ou quantos períodos anteriores usar, como você faria na média móvel ponderada. E, porque soava mais frio do que a média móvel ponderada. Na verdade, pode-se argumentar que a média móvel ponderada proporciona maior flexibilidade, pois você tem mais controle sobre a ponderação de períodos anteriores. A realidade é que qualquer um destes pode fornecer resultados respeitáveis, então por que não ir com um som mais fácil e mais frio. Suavização exponencial no Excel Veja como isso realmente seria exibido em uma planilha com dados reais. Copie os direitos autorais. O conteúdo no InventoryOps é protegido por direitos autorais e não está disponível para republicação. Na Figura 1A, temos uma planilha do Excel com 11 semanas de demanda e uma previsão exponencialmente suavizada calculada a partir dessa demanda. Eu usei um fator de suavização de 25 (0,25 na célula C1). A célula ativa atual é Cell M4 que contém a previsão para a semana 12. Você pode ver na barra de fórmulas, a fórmula é (L3C1) (L4 (1-C1)). Assim, as únicas entradas diretas para este cálculo são a demanda de períodos anteriores (Cell L3), os períodos anteriores previstos (Cell L4) e o fator de suavização (Cell C1, mostrado como referência de célula absoluta C1). Quando começamos um cálculo de suavização exponencial, precisamos conectar manualmente o valor para a 1ª previsão. Assim, na célula B4, em vez de uma fórmula, acabamos de digitar a demanda do mesmo período que a previsão. Na célula C4, temos o nosso 1º cálculo exponencial de suavização (B3C1) (B4 (1-C1)). Podemos copiar Cell C4 e colá-lo nas células D4 através de M4 para preencher o resto das nossas células de previsão. Agora, você pode clicar duas vezes em qualquer célula de previsão para ver se é baseada na célula de previsão de períodos anteriores e na célula de demanda de períodos anteriores. Portanto, cada cálculo subseqüente de suavização exponencial herda a saída do cálculo de suavização exponencial anterior. É assim que a demanda de cada período anterior é representada no cálculo dos períodos mais recentes, embora esse cálculo não faça referência direta a esses períodos anteriores. Se você deseja ter fantasia, você pode usar a função Excels trace precedents. Para fazer isso, clique em Celda M4 e, em seguida, na barra de ferramentas da fita (Excel 2007 ou 2010), clique na guia Fórmulas e, em seguida, clique em Preenchimentos de rastreamento. Ele irá desenhar linhas de conector para o primeiro nível de precedentes, mas se você continuar clicando em Preocupações de rastreamento, irá desenhar linhas de conector em todos os períodos anteriores para mostrar as relações herdadas. Agora, vamos ver o que o alisamento exponencial fez por nós. A Figura 1B mostra um gráfico de linha de nossa demanda e previsão. Você vê como a projeção exponencialmente suavizada remove a maior parte da irregularidade (o salto em torno) da demanda semanal, mas ainda consegue seguir o que parece ser uma tendência ascendente na demanda. Você também notará que a linha de previsão suavizada tende a ser menor do que a linha de demanda. Isso é conhecido como atraso de tendência e é um efeito colateral do processo de suavização. Sempre que usar o suavização quando uma tendência estiver presente, sua previsão ficará para trás da tendência. Isso é verdade para qualquer técnica de suavização. Na verdade, se continuássemos esta planilha e começássemos a inserir números de demanda mais baixos (fazendo uma tendência decrescente), você veria a queda da linha de demanda e a linha de tendência se deslocará acima dela antes de começar a seguir a tendência descendente. É por isso que eu mencionei anteriormente a saída do cálculo de suavização exponencial que chamamos de previsão, ainda precisa de mais algum trabalho. Há muito mais para a previsão do que apenas suavizar os solavancos na demanda. Precisamos fazer ajustes adicionais para coisas como atraso de tendência, sazonalidade, eventos conhecidos que podem afetar demanda, etc. Mas tudo isso está além do alcance deste artigo. Provavelmente, você também irá usar termos como suavização exponencial e suavização triplo exponencial. Estes termos são um pouco enganadores, uma vez que você não está re-suavizando a demanda várias vezes (você poderia, se quiser, mas isso não é o ponto aqui). Estes termos representam o uso de suavização exponencial em elementos adicionais da previsão. Assim, com suavização exponencial simples, você está suavizando a demanda base, mas com o alisamento duplo-exponencial, você suaviza a demanda base mais a tendência, e com alisamento triplo-exponencial você suaviza a demanda base mais a tendência mais a sazonalidade. A outra pergunta mais comum sobre o alisamento exponencial é onde eu consigo meu fator de suavização. Não há resposta mágica aqui, você precisa testar vários fatores de suavização com seus dados de demanda para ver o que obtém os melhores resultados. Existem cálculos que podem definir automaticamente (e alterar) o fator de suavização. Estes se enquadram no termo alisamento adaptativo, mas você precisa ter cuidado com eles. Simplesmente não há uma resposta perfeita e você não deve implementar de forma cega qualquer cálculo sem testes completos e desenvolver uma compreensão completa do que esse cálculo faz. Você também deve executar cenários do que-se para ver como esses cálculos reagem às mudanças de demanda que podem não existir atualmente nos dados de demanda que você está usando para testar. O exemplo de dados que usei anteriormente é um exemplo muito bom de uma situação em que você realmente precisa testar alguns outros cenários. Esse exemplo de dados específicos mostra uma tendência ascendente bastante consistente. Muitas grandes empresas com software de previsão muito caro ficaram em grande dificuldade no passado não tão distante, quando suas configurações de software que foram ajustadas para uma economia em crescimento não reagiram bem quando a economia começou a estagnar ou encolher. Coisas como esta acontecem quando você não entende o que seus cálculos (software) estão realmente fazendo. Se eles entendessem seu sistema de previsão, eles saberiam que precisavam entrar e mudar algo quando houve mudanças súbitas e dramáticas em seus negócios. Então, você tem os conceitos básicos de suavização exponencial explicados. Quer saber mais sobre o uso de suavização exponencial em uma previsão real, verifique meu livro Gerenciamento de inventário explicado. Copie os direitos autorais. O conteúdo no InventoryOps é protegido por direitos autorais e não está disponível para republicação. Dave Piasecki. É o proprietário do operador da Inventory Operations Consulting LLC. Uma empresa de consultoria que presta serviços relacionados à gestão de estoque, manuseio de materiais e operações de armazém. Ele tem mais de 25 anos de experiência em gerenciamento de operações e pode ser alcançado através do seu site (inventário), onde ele mantém informações relevantes adicionais. O meu Negócio na prática, a média móvel proporcionará uma boa estimativa da média das séries temporais se a média for constante ou se mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo significará os efeitos da variabilidade. O objetivo de fornecer um m mais pequeno é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra as séries temporais usadas para ilustração juntamente com a demanda média da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Depois, ela se torna constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas utilizadas para o exemplo. Quando usamos a tabela, devemos lembrar que, em qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas em conjunto com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas médias móveis para a direita por períodos. Uma conclusão é imediatamente aparente da figura. Para as três estimativas, a média móvel está atrasada por trás da tendência linear, com o atraso crescente com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um momento específico no valor médio do modelo e o valor médio previsto pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série cada vez maior com tendência a. Os valores de lag e de polarização do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Além disso, as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada pela mudança das curvas para a direita. O atraso e o desvio aumentam proporcionalmente. As equações abaixo indicam o atraso e a polarização de um período de previsão para o futuro em relação aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel baseia-se no pressuposto de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Como as séries em tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para esses resultados. Também podemos concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menores. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero e a variância do erro é composta por um termo que é uma função e um segundo termo que é a variância do ruído. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com uma média constante. Este termo é minimizado fazendo o m o mais grande possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar as previsões sensíveis às mudanças, queremos m o mais pequeno possível (1), mas isso aumenta a variação do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de previsão implementa as fórmulas da média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro médio móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto feito a partir da média móvel no tempo 0 é 11,1. O erro então é -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.

No comments:

Post a Comment